​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​Life cycle assessment

Life cycle assessment (LCA) is a technique used to assess the environmental impact associated with all the stages of a product's life, from the extraction of raw materials through to processing, manufacturing, distribution and end-of-life treatment. 

The life cycle of a Tetra Pak carton

The value of understanding the environmental impacts along the value chain was appreciated early in the company.  We have LCAs investigating our product system dating as far back as the mid-80's.  Understanding the impacts along the life cycle enables us to identify opportunities to improve the environmental aspects of our product systems and to support environmentally conscious product and process design.

In 1999, Tetra Pak commissioned an early LCA study mapping the beverage carton's life cycle stages and the related environment contribution in each stage. The study was conducted by an independent research institution in Norway and followed the standardised life cycle assessment procedure.

LCA examples

Several LCAs have been made, investigating the environmental impact of beverage food and packaging systems. In these published examples, LCAs were undertaken by independent scientific institutes, using the internationally-accepted standard method (the ISO 14040 series of standards). All studies were peer-reviewed.

Read more on LCA examples​.

Calculating the carbon footprint of a carton

The carbon footprint of a product is the sum of all greenhouse gases emitted during its life cycle. This includes the sourcing of raw materials used, the production, distribution, consumption, transportation as well as the end-of-life treatment of the product.

We produce many different types of packages that are filled and distributed in various locations around the world. The end-of-life treatment also varies from case to case depending on local recycling conditions as well as the choices made by the end consumer. To calculate the exact footprint of each of these combinations would be a very lengthy task.​

Cradle-to-Gate results for a number of our carton packages can be generated using our Carton CO2 Calculator. The results from the Carton CO2 calculator show the carbon footprint of  cartons under European conditions up to the moment when the packaging material leaves our factories. Impacts associated with sourcing and transporting raw materials to our plants, as well as converting the materials into packaging material, are areas that we control directly through our policies and actions. Furthermore, these measures enable our customers to make informed climate choices when choosing their packaging.

Carbon trust logo




Our online Carton CO2 calculator​ (version 6,2019) has been certified by the Carbon Trust as capable of generating carbon footprints in compliance with PAS 2050: 2011, ISO 14044:2006 and ISO 14067:2018.

​Indicative carbon footprint of an aseptic beverage carton

​​To illustrate the climate impact across the life cycle of an aseptic beverage carton, we here present the life cycle carbon footprint for a typical 1 litre Tetra Brik Aseptic with cap (HeliCap23).​

Carbon footprint aseptic carton graph

The results show the cradle-to-grave carbon footprint of the carton, including raw material production, transport of raw materials, converting, transport of packaging materials to filler, filling and distribution, and end-of-life.

The calculations are based on industry average data and for European conditions. For production of liquid packaging board average data as presented by The Alliance for Beverage Cartons and the Environment (www.ace.be) is used, for plastics data as presented by Plastics Europe is used (www.plasticseurope.org) and for aluminium foil data as presented by European Aluminium Association is used (www.eaa.net). For the converting operations global average data from Tetra Pak's GHG reporting is used representing the performance in 2016. The impact of the transport of raw materials to the converting factory is included in the converting result and based on European average data. For the transport of packaging materials to the filler, average modes and distances as presented by ACE are applied. Forming and filling of the package are based on typical performance data and global average data for electricity. The end-of-life settings are based on average European waste management conditions based on statistics from 2016 (www.ace.be), with 47% recycling and 29% energy recovery. Landfill has been modelled for the remaining part. The 'cut-off' method has been used when modelling end-of-life: no environmental burdens nor credits have been included in the results for cartons going to recycling or incineration with energy recovery.

The 'biogenic carbon uptake in the material', as presented separately in the results, is an estimate of the amount of carbon that is stored in the carton when leaving the Tetra Pak converting factory gate. Growing plants capture and store carbon from the atmosphere. When the wood fibre is processed into paperboard the carbon continues to be stored in the carton. 'Biogenic carbon release' includes the amount of carbon that is released at end-of-life, if not recycled or energy recovered (in these cases the cut-off method has been applied as described above). To get a net result, including both fossil and biogenic CO2, the carbon footprint impact and the biogenic carbon uptake and biogenic carbon release should be summed.

The calculated results are not exact; they are indicative and based on several simplifications. To get the exact CO2e footprint of a package you need to know its specific material composition, in which converting factory it was produced and whether raw materials were brought to Tetra Pak by train or truck. We have used the most common material specification as the basis for the calculation of the results.

Package specifications and weights vary locally and with product protection requirements. CO2e footprint data will necessarily change over time as methodologies and data are refined.

The results should not be used to support comparative claims made to the public. Any such use would fall outside of the requirements of the relevant ISO standards.

The results are sourced from Tetra Pak's internal tool (CO2e Product Model version 5, 2018). The carbon footprint of this product has been certified by the Carbon Trust. ​


Do you want more information about Life Cycle assessments?